Select Page

Toxic Heavy Metals

There are 35 metals of concern, 23 of them are called heavy metals. Toxicity can result from any of these metals. The following are a list of the big 6 toxic heavy metals. These are the most prevalent in the body from industrial and environmental exposure. Of the big 6 iron is the one heavy metal that is essential in the right amounts but is toxic at high amounts. The rest are toxic at any level in the body.

  1. Arsenic
  2. Lead
  3. Mercury
  4. Cadmium
  5. Aluminum
  6. Iron


Arsenic is the most common cause of acute heavy metal poisoning in adults and is number 1 on the ATSDR’s “Top 20 List.” Arsenic is released into the environment by the smelting process of copper, zinc, and lead, as well as by the manufacturing of chemicals and glasses. Arsine gas is a common byproduct produced by the manufacturing of pesticides that contain arsenic. Arsenic may be also be found in water supplies worldwide, leading to exposure of shellfish, cod, and haddock. Other sources are paints, rat poisoning, fungicides, and wood preservatives. Target organs are the blood, kidneys, and central nervous, digestive, and skin systems (Roberts 1999; ATSDR ToxFAQs for Arsenic –


Lead is number 2 on the ATSDR’s “Top 20 List.” Lead accounts for most of the cases of pediatric heavy metal poisoning (Roberts 1999). It is a very soft metal and was used in pipes, drains, and soldering materials for many years. Millions of homes built before 1940 still contain lead (e.g., in painted surfaces), leading to chronic exposure from weathering, flaking, chalking, and dust. Every year, industry produces about 2.5 million tons of lead throughout the world. Most of this lead is used for batteries. The remainder is used for cable coverings, plumbing, ammunition, and fuel additives. Other uses are as paint pigments and in PVC plastics, x-ray shielding, crystal glass production, pencils, and pesticides. Target organs are the bones, brain, blood, kidneys, and thyroid gland (International Occupational Safety and Health Information Centre 1999; ATSDR ToxFAQs for Lead –


Number 3 on ATSDR’s “Top 20 List” is mercury. Mercury is generated naturally in the environment from the degassing of the earth’s crust, from volcanic emissions. It exists in three forms: elemental mercury and organic and inorganic mercury. Mining operations, chloralkali plants, and paper industries are significant producers of mercury (Goyer 1996). Atmospheric mercury is dispersed across the globe by winds and returns to the earth in rainfall, accumulating in aquatic food chains and fish in lakes (Clarkson 1990). Mercury compounds were added to paint as a fungicide until 1990. These compounds are now banned; however, old paint supplies and surfaces painted with these old supplies still exist. Mercury continues to be used in thermometers, thermostats, and dental amalgam. (Many researchers suspect dental amalgam as being a possible source of mercury toxicity [Omura et al. 1996; O’Brien 2001].) Medicines, such as mercurochrome and merthiolate, are still available. Algaecides and childhood vaccines are also potential sources. Inhalation is the most frequent cause of exposure to mercury. The organic form is readily absorbed in the gastrointestinal tract (90-100%); lesser but still significant amounts of inorganic mercury are absorbed in the gastrointestinal tract (7-15%). Target organs are the brain and kidneys (Roberts 1999; ATSDR ToxFAQs for Mercury  –


Cadmium is a byproduct of the mining and smelting of lead and zinc and is number 7 on ATSDR’s “Top 20 list.” It is used in nickel-cadmium batteries, PVC plastics, and paint pigments. It can be found in soils because insecticides, fungicides, sludge, and commercial fertilizers that use cadmium are used in agriculture. Cadmium may be found in reservoirs containing shellfish. Cigarettes also contain cadmium. Lesser-known sources of exposure are dental alloys, electroplating, motor oil, and exhaust. Inhalation accounts for 15-50% of absorption through the respiratory system; 2-7% of ingested cadmium is absorbed in the gastrointestinal system. Target organs are the liver, placenta, kidneys, lungs, brain, and bones (Roberts 1999; ATSDR ToxFAQs for Cadmium –


Discussion of iron toxicity in this protocol is limited to ingested or environmental exposure. Iron overload disease (hemochromatosis), an inherited disorder, is discussed in a separate protocol. Iron does not appear on the ATSDR’s “Top 20 List,” but it is a heavy metal of concern, particularly because ingesting dietary iron supplements may acutely poison young children (e.g., as few as five to nine 30-mg iron tablets for a 30-lb child –

Ingestion accounts for most of the toxic effects of iron because iron is absorbed rapidly in the gastrointestinal tract. The corrosive nature of iron seems to further increase the absorption. Most overdoses appear to be the result of children mistaking red-coated ferrous sulfate tablets or adult multivitamin preparations for candy. (Fatalities from overdoses have decreased significantly with the introduction of child-proof packaging. In recent years, blister packaging and the requirement that containers with 250 mg or more of iron have child-proof bottle caps have helped reduce accidental ingestion and overdose of iron tablets by children.) Other sources of iron are drinking water, iron pipes, and cookware. Target organs are the liver, cardiovascular system, and kidneys (Roberts 1999 –


Although aluminum is not a heavy metal (specific gravity of 2.55-2.80), it makes up about 8% of the surface of the earth and is the third most abundant element (ATSDR ToxFAQs for Aluminum). It is readily available for human ingestion through the use of food additives, antacids, buffered aspirin, astringents, nasal sprays, and antiperspirants; from drinking water; from automobile exhaust and tobacco smoke; and from using aluminum foil, aluminum cookware, cans, ceramics, and fireworks (ATSDR ToxFAQs for Aluminum –

Studies began to emerge about 20 years ago suggesting that aluminum might have a possible connection with developing Alzheimer’s disease when researchers found what they considered to be significant amounts of aluminum in the brain tissue of Alzheimer’s patients. Although aluminum was also found in the brain tissue of people who did not have Alzheimer’s disease, recommendations to avoid sources of aluminum received widespread public attention. As a result, many organizations and individuals reached a level of concern that prompted them to dispose of all their aluminum cookware and storage containers and to become wary of other possible sources of aluminum, such as soda cans, personal care products, and even their drinking water (Anon. 1993).

However, the World Health Organization (WHO 1998) concluded that, although there were studies that demonstrate a positive relationship between aluminum in drinking water and Alzheimer’s disease, the WHO had reservations about a causal relationship because the studies did not account for total aluminum intake from all possible sources. Although there is no conclusive evidence for or against aluminum as a primary cause for Alzheimer’s disease, most researchers agree that it is an important factor in the dementia component and most certainly deserves continuing research efforts. Therefore, at this time, reducing exposure to aluminum is a personal decision. Workers in the automobile manufacturing industry also have concerns about long-term exposure to aluminum (contained in metal working fluids) in the workplace and the development of degenerative muscular conditions and cancer (Brown 1998; Bardin et al. 2000). Target organs for aluminum are the central nervous system, kidney, and digestive system.

Exposure to toxic heavy metals is generally classified as acute, 14 days or less; intermediate, 15-354 days; and chronic, more than 365 days (ATSDR). Additionally, acute toxicity is usually from a sudden or unexpected exposure to a high level of the heavy metal (e.g., from careless handling, inadequate safety precautions, or an accidental spill or release of toxic material often in a laboratory, industrial, or transportation setting). Chronic toxicity results from repeated or continuous exposure, leading to an accumulation of the toxic substance in the body. Chronic exposure may result from contaminated food, air, water, or dust; living near a hazardous waste site; spending time in areas with deteriorating lead paint; maternal transfer in the womb; or from participating in hobbies that use lead paint or solder. Chronic exposure may occur in either the home or workplace. Symptoms of chronic toxicity are often similar to many common conditions and may not be readily recognized. Routes of exposure include inhalation, skin or eye contact, and ingestion (ATSDR MMGs and ToxFAQs; Anon. 1993; WHO 1998; International Occupational Safety and Health Information Centre 1999; Roberts 1999; Dupler 2001; Ferner 2001).